Controversies in the stomach

Nipaporn Pichetshote, MD
Assistant Director of GI Motility,
Cedars-Sinai Medical Center
Los Angeles, CA

Role of prokinetics in symptom improvement of functional dyspepsia: Cochrane collaboration meta-analysis of randomized controlled trials

- Investigators: Rapat Pittayanon, Yuhong Yuan, Natasha Bollegala, Reena Khanna, Grigorios Leontiadis, Paul Moayyedi
- Subjects: 12285 patients from 39 studies
- Design: Meta-analysis of RCTs
- Not industry funded

Background

Pathophysiology of functional dyspepsia

Background

- Prokinetics in FD controversial
- Rome IV recommendations
 - First line in PDS
- ACG and CAG
 - Third line treatment
 - Following PPI and TCAs

Study aim

- Primary
 - Evaluating the efficacy of prokinetics in improving FD symptoms
- Secondary
 - Evaluating quality of life and adverse events

Study subjects

Inclusion criteria

Age ≥ 18

RCTs with parallel design/cross over

FD by Rome I-IV criteria/compatible

Negative endoscopy, no organic disease

Prokinetic vs placebo/prokinetic

Exclusion criteria

Pts with mainly heartburn/reflux

Assessed prokinetic as anxiolytic

Herbal prokinetics

Treatment <7 days

No binary outcome (yes/no)

Subgroup analyses

- Subtypes of FD
 - PDS, EPS, or mixed
- Risk of bias (RoB)
 - High, low, or unclear
- Type of publication
 - Full paper vs abstract
- Validated dyspepsia questionnaires
- Length of f/u
 - ≥4 wks vs <4 wks)</p>

- Prokinetic vs Placebo
 - 29 studies, 10044 participants
 - RR 0.81 (0.75-0.89)
 - NNT 7
 - $I^2 91\%$
- Removal of cisapride
 - RR 0.87 (0.81-0.94)
 - NNT 12

	Relative Risk
Cisapride	0.71 (0.54-0.93)
Acotiamide	0.94 (0.91-0.98)
Itopride	0.70 (0.47-1.03)
Tegaserod	0.89 (0.82-0.96)
Mosapride	0.91 (0.73-1.13)
ABT-229	1.33 (1.05-1.70)

	Relative Risk (RR)	l 2	Subjects
PDS	0.82 (0.70-0.95)	93%	11 studies, 5822 subjects
EPS	0.67 (0.48-0.93)	6%	2 studies, 124 subjects
Mixed	0.82 (0.73-0.92)	90%	17 studies, 4096 subjects

Secondary aim

- Very low change in quality of life scores
 - Heterogeneity, publication bias
- Adverse events
 - Misopride, itopride, acotiamide = placebo
 - Cisapride > placebo
- Very low GRADE assessment (subgroup analysis)
 - Heterogeneity, publication bias

Conclusion

- Evidence suggests prokinetics are effective in reducing symptoms for all FD subtypes
- No evidence that prokinetic improves QoL
- Insufficient evidence to support Rome IV recommendation
 - Very low quality of evidence

Chronic cannabis use and gastrointestinal symptomatology, endoscopic, and high resolution manometry findings: a retrospective case-control study

- Investigators: Shelini Sooklal, Meet Parikh, Asyria S. Ahmad
- Design: Retrospective case control study from 2006-2017
- Subjects: 2371 patients GI office
- Intervention: Cannabis use
- Not industry funded

Business Insider. April 2018.

Background

- Endocannabinoid system
 - Endogenous cannabinoid signaling system
 - Involves cannabinoid receptors
 - Ligands located in nerve and immune cells
- Implicated in GI functions
 - Nausea and vomiting, food intake, visceral sensation, motility and inflammation

Subjects and Demographics

	Cannabis users % (n=772)	Controls % (n=1599)	p Value
Male	53 (408)	41 (649)	
Female	47 (364)	59 (649)	
Age (avg)	49.4 (18-84)	59.4 (22-95)	<0.0001
African-American	70 (540)	53 (847)	
Caucasian	22 (167)	32 (516)	
Hispanic	7 (54)	12 (129)	
Asian	1 (11)	3 (57)	
Daily use	64 (249)		
Weekly use	20 (81)		
Monthly use	16 (63)		

	Cannabis users % (n=772)	Controls % (n=1599)	p Value	Odds Ratio (OR)
Abdominal pain	25 (190)	8 (128)	<0.0001	3.7
Heartburn	15 (118)	9 (146)	<0.0001	1.8
Nausea & vomiting	7 (51)	1 (21)	<0.0001	5.2
Diarrhea	4 (31)	6 (91)	0.07	0.7
Constipation	4 (34)	6 (102)	0.04	0.7
Dysphagia	2 (13)	5 (83)	<0.0007	0.3
Weight loss	3 (20)	3 (40)	0.90	1.0
Rectal bleeding	6 (43)	9 (146)	0.002	0.6

Endoscopic Findings	Cannabis users % (n=331)	Controls % (n=1299)	p Value	Odds Ratio (OR)
Esophagitis	8 (26)	3 (41)	0.0003	2.5
Non-erosive gastritis	30 (100)	15 (190)	0.0001	2.4
Erosive gastritis	14 (46)	3 (43)	<0.0001	4.4
Gastric/duodenal Ulcer	1 (3)	0.5 (6)	0.37	1.9
EGJOO	40 (8)	24 (7)	0.24	2.1
Intra-esophageal stasis	65 (13)	17 (5)	0.001	8.9
Hypertensive LES	27 (7)	8 (4)	0.02	4.4
Normal	20 (4)	52 (15)	0.03	0.2

Conclusion

- Largest study evaluating GI complaints of patients with chronic recreational cannabis use
- Most common complaint
 - Abdominal pain
- Hypertensive LES and intra-esophageal stasis may explain increased heartburn and vomiting in cannabis users
- Results suggest that cannabis use may exacerbate, or initiate, a variety of GI symptoms

Per-oral pyloromyotomy (POP) for medically refractory post-surgical gastroparesis

- Investigators: Andrew Strong, Joshua Landreneau, Michael Cline, Matthew Kroh, John Rodriguez, Jeffrey Ponsky, Kevin El-Hayek
- Subjects: 29 pts with post-surgical gastroparesis
- Design: Case series
- Not industry funded

Background

- Gastroparesis is a disease of objective delayed gastric emptying in the absence of mechanical obstruction
- Causes of gastroparesis
 - Diabetic 29%
 - Idiopathic 36%
 - Post-surgical 13%

Current treatment options

	Surgical	Endoscopic
Diet	Gastrojejunostomy	Decompression G tube
Promotility Drugs	Gastrectomy	Jejunal feeds
Antiemetics	Pyloroplasty	Botox injections
Gastric stimulators		Trans-pyloric stents
		G-POEM or POP

G-POEM (gastric-per oral endoscopic myotomy) or POP (per-oral pyloromyotomy)

Subjects

Female sex	79.3%
Mean age (±SD)	55.5 ± 14.2
Mean BMI (±SD)	28.0 ± 4.5
HTN	31%
GERD	17.2%
Fibromyalgia	20.7%
Dyslipidemia	17.2%
Diabetes	10.3%
IBS	6.8%
Depression	37.9%
Anxiety	17.2%

Vagotomy	3.4%
Hiatal/paraesophageal hernia repair	41.3%
Fundoplication alone	41.3%
Heller myotomy	3.4%
Other	17.2%
Prior interventions	34.4%
G-tube	6.9%
J-tube	3.4%
Gastric electric stim	3.4%
Botox injection to pylorus	24.1%
GES at 4 hrs	49.7%

	Pre	90d Post-POP	p Value
Mean total GCSI Score (±SD)	3.82 ± 0.67	2.36 ± 1.21	0.0001
Mean Post Prandial Fullness Subscore (±SD)	3.28 ± 0.94	1.68 ± 1.17	0.0002
Mean N/V Subscore (±SD)	3.91 ± 0.98	2.68 ± 1.52	0.0017
Mean bloating Subscore (±SD)	4.27 ± 1.12	2.73 ± 1.73	0.0022

Conclusion

- Largest series of pts who have undergone POP for refractory post-surgical gastroparesis at a single institution
- POP is a safe and effective endoscopic salvage therapy for post-surgical gastroparesis
- This procedure is a reasonable 1st line option for pts with medically refractory gastroparesis

Author	Study design	Subjects	Results
Jacques	Prospective study	20 refractory Gp (10 DB, 10 non) w/ pyloric dysfunction	Improved GCSI, PAGY-QOL, and GES
Yan	Meta-analysis	149 pts	GSCI -1.49, improved GES
Vulcano	Meta-analysis	Total 116 Gp pts	GCSI and GES -1.27 mean change
Avalos	Meta-analysis	130 pts (45% idio, DB 31%, post-vagot 21%, post inf 2%, other 2%	GCSI improved 87%; GES normalized 62.6%
Hustak	Prospective case series	7 pts (4 postsurgical, 2 diabetic, 1 idiopathic) s/p G-POEM	GCSI-decreased GES-normalized in all pts
Parsa	Retrospective comparative study	76 pts s/p Botox injection vs 21 s/p G-POEM (most idiopathic Gp)	Improved in GCSI 35.7% in Botox vs 85% in G-POEM
Sanaei	Prospective study	30 pts with refractory Gp	Improved PAGI-SYM; improved or normalization of GES
Triggs	Case series	8 post-surgical Gp with trans- pyloric stent	7/8 reported symptom improvement, mean increase in DI of pylorus