

Controversies (and Breakthroughs) of Colonoscopy

Questions and (Some) Answers from DDW and the Literature in 2019 (and 2018)

Outline

- Improving Polyp Detection
- Colon Polypectomy
 - Just how good (or bad) are we?
 - Is "EMR" Changing?
- Preventing Delayed Post-Polypectomy Bleeds
 - Next Talk
- Colonoscopy Inspection, Detection, and Resection: Computers to the Rescue?

Improving Polyp Detection

Guiding Principle

Implementing Systems-Based Best Practice Techniques

• Split Dose Bowel Preparation

Improving
Implementation of
Existing Techniques
& Technology

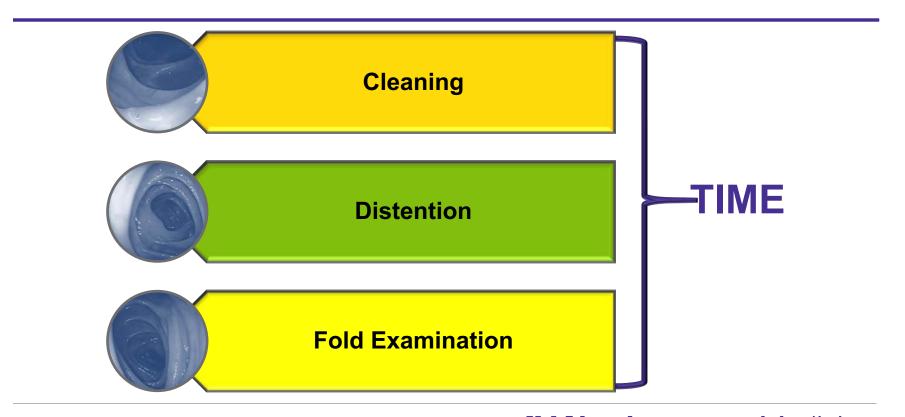
- Quality Metric Measurement/Feedback
- Training
- Video Coaching
- High Definition Colonoscopes

Implementing Novel Techniques Using Existing Technology

- Cecal Retroflexion
- Water Immersion
- Chromoendoscopy

Developing
Accessories to
Utilize with
Existing
Technology

 Mucosal Exposure Devices

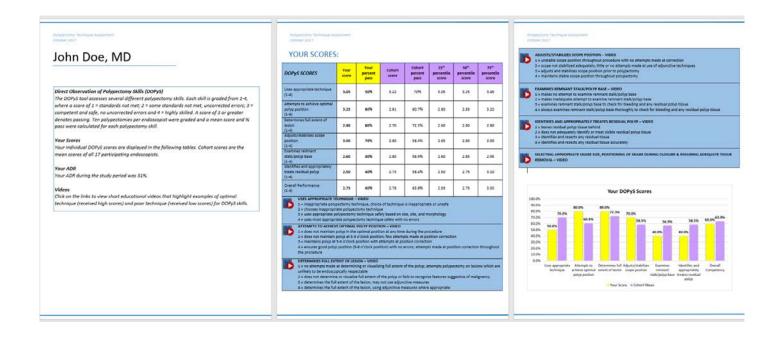

Developing Novel/Disruptive Technology

- Artificial Intelligence
- New "wide field of view" colonoscopes

Harder

Easier

Components to Optimal Colonoscopy Inspection

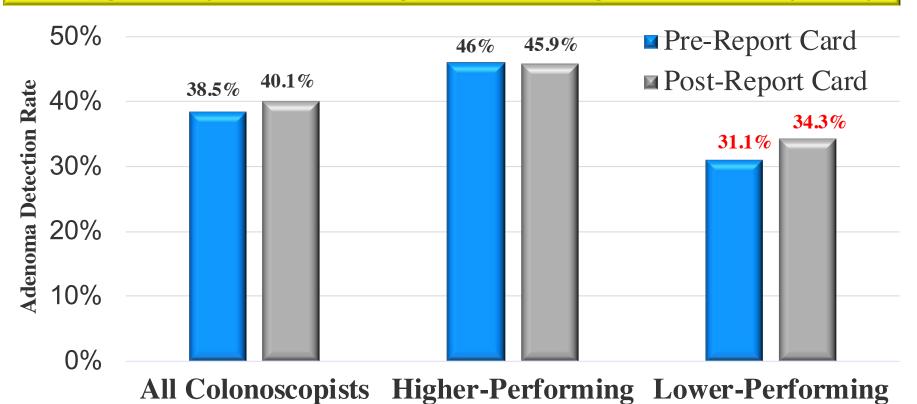


Methods: Grading Colonoscopy Inspection Quality

Score	0	1	2	3	4	5
Fold Examination	Very Poor Not looking behind any folds; "straight pull- back" technique	Poor	Fair	Good	Very Good	Excellent Looking behind all folds
Cleaning	Very Poor No attempt to clean stool and pools of liquid	Poor	Fair	Good	Very Good	Excellent All stool and pools of liquid removed
Luminal Distension	Very Poor No colonic distension, or spasm	Poor	Fair	Good	Very Good	Excellent Optimal colonic distension

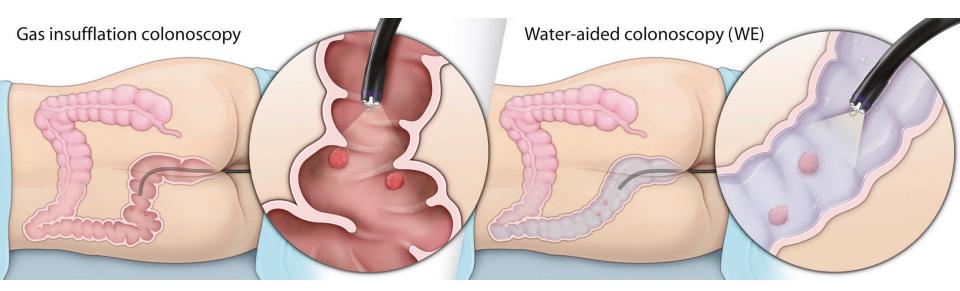
M Northwestern Medicine®

Can We Deliver More Granular Feedback?


Structured Feedback with Video Didactics

Fold Examination

- A careful examination of the colonic folds is a crucial element to excellent withdrawal technique
- Look 360° behind all folds and avoid a "straight pull-back technique"
- Additional attention needed in segments with deep folds and at flexures
- Cecal retroflexion can help to see the back of the folds in the ascending colon; however, simply retroflexing without a careful inspection of the folds has no added benefit

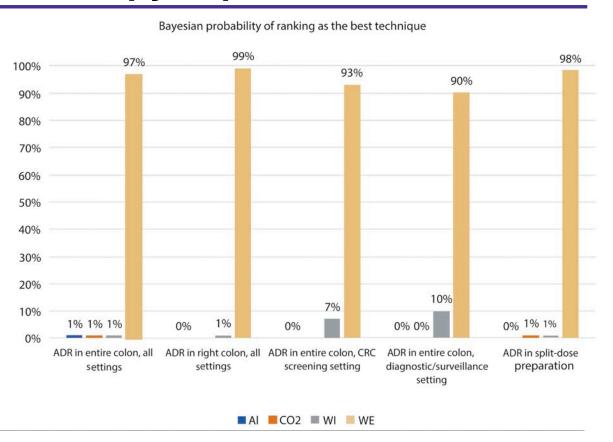

Video Coaching to Improve ADR

ADR significantly improved among lower-performing colonoscopists (p<0.05)

DULOY A ET AL; KESWANI RN, DDW, 2019

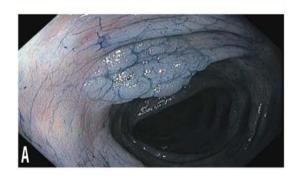
Water Aided Colonoscopy Impact on ADR

Water Aided Colonoscopy Impact on ADR


 Raw estimates of overall ADR were

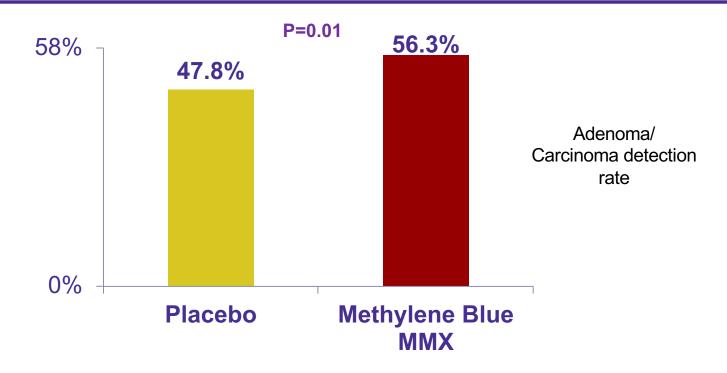
■ **WE**: 41.7%

■ WI: 34.4%


■ **AI**: 30.2%

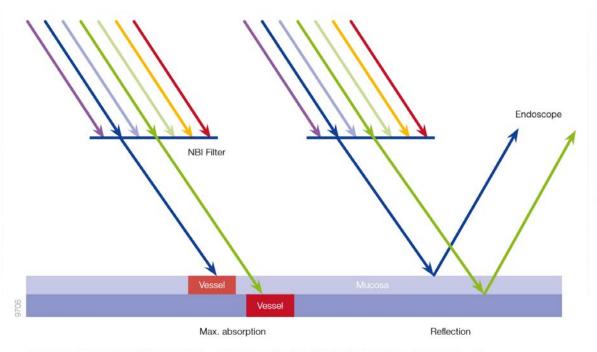
■ **CO**₂: 31.1%

Chromoendoscopy


- Prior studies with a significant increase in adenoma detection in chromoendoscopy
- However, the increase in adenoma detection was small without increase in advanced adenoma detection
- Given difficulty in use of chromoendoscopy, it has not been widely adopted for routine screening colonoscopy

Chromoendoscopy that is tolerable (for the colonoscopist)

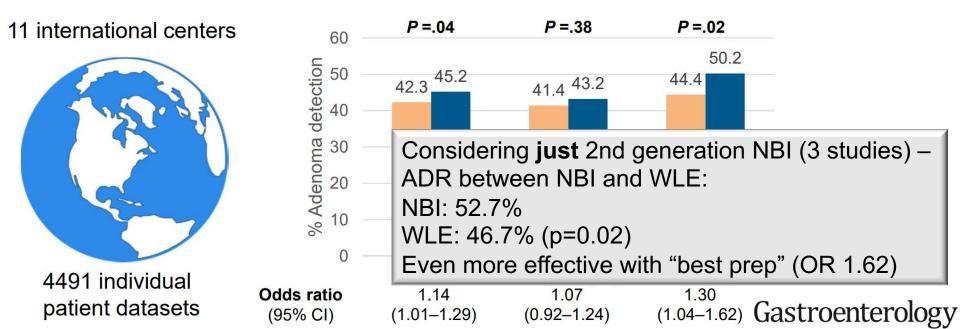
Chromoendoscopy that is tolerable (for the colonoscopist)



Improving ADR via Lights and More

- Lights
 - Traditionally found to be ineffective at improving ADR likely because everything is just too dark.
 - Newer data emerging, especially for NBI (Olympus) and BLI (FUJI)
- Devices discussed yesterday but brief recap

Narrow Band Imaging



Absorption of narrow band light by capillaries on the mucosal surface (blue) and veins in the submucosa (green).

Narrow Band Imaging

Individual patient level data meta-analysis for high definition White Light Endoscopy (WLE) vs Narrow Band Imaging (NBI) stratified by bowel preparation

ATKINSON NSS ET AL; EAST JE, GASTROENTEROLOGY 2019 (IN PRESS)

Blue Light Imaging

Multiple
 randomized studies
 demonstrating
 superiority of BLI
 versus WLE

Innovations and brief communications

Thieme

The adenoma miss rate of blue-laser imaging vs. white-light imaging during colonoscopy: a randomized tandem trial

Authors

Ryo Shimoda¹, Yasuhisa Sakata¹, Takehiro Fujise¹, Kohei Yamanouchi¹, Nanae Tsuruoka¹, Megumi Hara², Atsushi Nakayama¹, Daisuke Yamaguchi¹, Takashi Akutagawa¹, Kazuma Fujimoto¹, Ryuichi Iwakiri¹

Institutions

- Department of Internal Medicine and Gastrointestinal Endoscopy, Saga Medical School, Japan
- 2 Department of Preventive Medicine, Saga Medical School, Japan

submitted 16.3,2016 accepted after revision 8.9,2016

Bibliography

DOI http://dx.doi.org/10.1055/s-0042-118450 Published online: 14.11.2016 | Endoscopy 2017; 49: 186–190 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0013-726X

Corresponding author

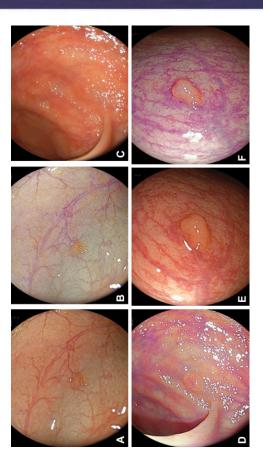
shimodar@cc.saga-u.ac.jp

Ryo Shimoda, MD, Department of Internal Medicine and Gastrointestinal Endoscopy, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan Fax: +81-95-2342017

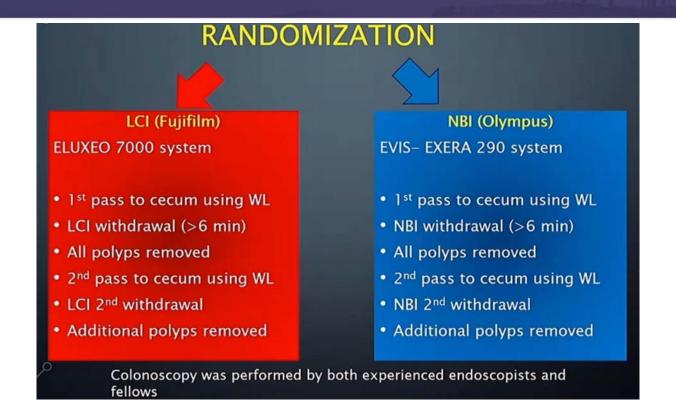
ABSTRACT

Background and study aims The aim of the present study was to determine whether blue-laser imaging (BLI) reduced the miss rate of colon adenomatous lesions compared with conventional white-light imaging (WLI).

Patients and methods This was a prospective randomized study of patients undergoing screening and/or surveillance colonoscopy at Saga Medical School, Japan. A total of 127 patients were randomized to tandem colonoscopy with BLI followed by WLI (BLI-WLI group) or WLI followed by WLI (WLI-WLI group). The main outcome measure was the adenoma miss rate.


Results The proportion of patients with adenomatous lesions was 62.5% (40)(64) in the BIL-WIJ group and 63.5% (40)(63) in the WIL-WIJ group. The total number of adenomatous lesions detected in the first inspection of the BIL-WIJ and WIJ-WIJ groups was 179 and 108, respectively, compared with 182 and 120 in the second inspection, respectively. The miss rate in the BIL-WIJ group was (1.6%), which was significantly less than that in the WIJ-WIJ group (10.0%, P=0.001).

Conclusions Colonoscopy using BLI resulted in a lower colon adenoma miss rate than WLI.


Trial registration UMIN 000015677.

Linked Color Imaging (FUJI)

- Post-processing technique which emphasizes mucosal pattern/color and blood vessels
- Superior to WLE for detection of colorectal polyps, including SSPs

LCI versus NBI

LEUNG WK ET AL; LO SH, DDW, 2019

LCI versus NBI

	LCI	NBI	Р
First colonoscopy			
Patients with polyps (%)	76 (55.9)	97 (71.3)	0.008
Patients with adenomas (%)	54 (39.7)	70 (51.5)	0.05
Patients with advanced adenomas (%)	9 (6.6)	9 (6.6)	1.0
Patients with serrated polyps (%)	30 (22.1)	47 (34.6)	0.02
Patients with proximal polyps (%)	56 (41.2)	56 (41.2)	1.0
Patients with proximal adenomas (%)	43 (31.6)	48 (35.3)	0.52
Mean number of polyps per patient (SD)	1.35 (1.80)	2.04 ± 2.91	0.019
Mean number of adenomas per patient (SD)	0.90 (1.48)	1.26 ± 2.25	0.11

	LCI	NBI	Р
Second colonoscopy			
Patients with polyps (%)	38 (27.9)	48 (35.3)	0.19
Patients with adenoma (%)	21 (15.4)	28 (20.6)	0.27
Patients with advanced adenoma (%)	4 (2.9)	2 (1.5)	0.68
Patients with serrated polyps (%)	13 (9.6)	20 (14.7)	0.19
Patients with proximal polyps (%)	13 (9.6)	27 (19.9)	0.017
Patients with proximal adenoma (%)	8 (5.9)	18 (13.2)	0.04
Mean number of polyps per patient (SD)	0.38 (0.70)	0.50 (0.82)	0.17
Mean number of adenomas per	0.23 (0.61)	0.25 (0.54)	0.33

Comparing Mucosal Exposure Devices

- Evaluate Endocuff and Endorings compared to HD forward viewing colonoscopy
- Compare three mucosal exposure devices to each other *i.e* Endocuff *versus* EndoRings *versus* FUSE.

Olympus HD colonoscope

Olympus HD colonoscope with Endocuff

Olympus HD colonoscope with EndoRings

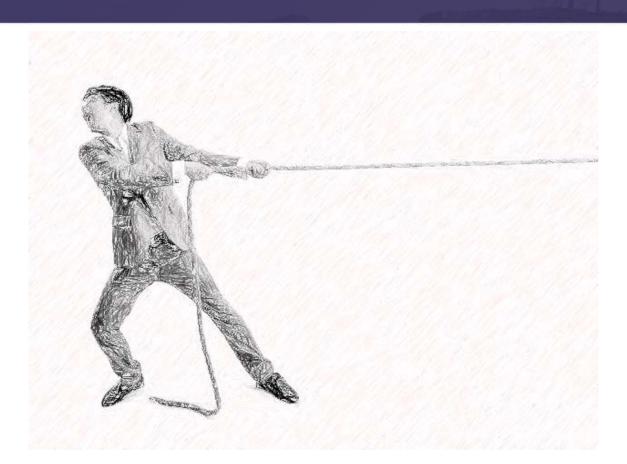
Full Spectrum Endoscopy (FUSE)

REX DK ET AL, GIE, 2018

Detection endpoints

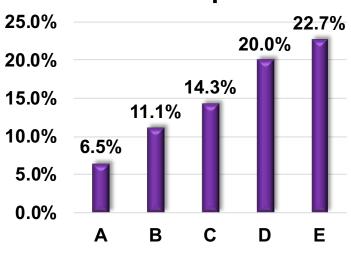
APC

- The overall APC with Endocuff, EndoRings, and control were all higher than FUSE (p < 0.001)
- APC with Endocuff was higher than control (p=0.014)
- Right colon APC was higher for Endocuff (p<0.001), EndoRings (p=0.043) and control (p=0.003) compared to FUSE; Endocuff was higher than control (p=0.023)
- There were no differences between modalities in APC for conventional adenomas ≥ 10 mm either overall (p=0.306) or at any of the study sites.


SSPC

• There were some statistically significant differences between devices in serrated detection but they were small and did not appear clinically significant

REX DK ET AL, GIE, 2018


	Study arm			
	Control	Endocuff	EndoRings	FUSE
Adenomas per colonoscopy (APC)				
All sites	1.53 (2.33)	1.82 (2.58)	1.55 (2.42)	1.30 (1.96)
Indianapolis	1.89 (2.69)	2.17 (2.88)	1.97 (2.77)	1.59 (2.18)
Milan	0.83 (1.18)	0.80 (1.25)	0.72 (1.17)	0.68 (1.19)
New York	0.92 (1.15)	2.00 (2.34)	0.75 (0.94)	0.80 (1.32)
SSP per colonoscopy				
All sites	0.17 (0.54)	0.17 (0.54)	0.20 (0.81)	0.18 (0.74)
Indianapolis	0.24 (0.64)	0.23 (0.63)	0.29 (0.98)	0.25 (0.89)
Milan	0.03 (0.16)	0.04 (0.26)	0.01 (0.12)	0.03 (0.16)
New York	0.04 (0.20)	0.07 (0.26)	0.04 (0.20)	0.04 (0.20)

Controversies in Polypectomy

Variability in Colon Polypectomy Performance

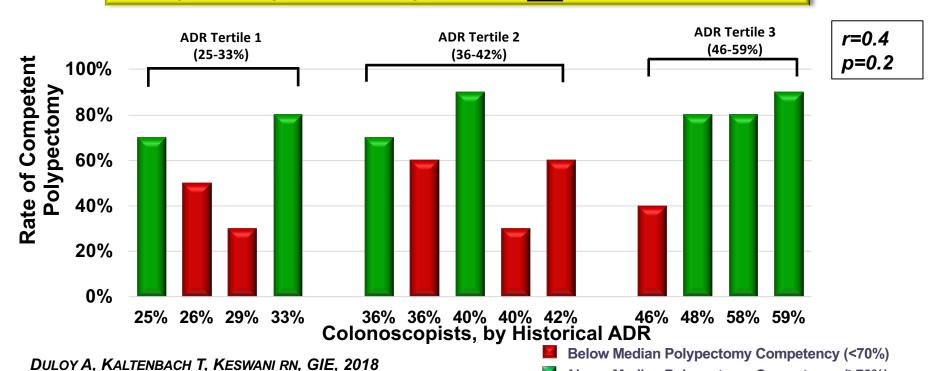
Incomplete Resection Rate Varies by Endoscopist

- In a study of 5 endoscopists removing 346 polyps, 10.1% of polyps overall were incompletely resected
- This rate varied significantly by endoscopist

Diminutive (≤ 5 mm) Polypectomy

	All polyps $(N=261 \text{ polyps})$	Jumbo forceps $(N=144 \text{ polyps})$	Cold snare $(N=117 \text{ polyps})$	P value
Incomplete resection, n (%)	25 (9.6%)	16 (11.1%)	9 (7.7%)	0.41
Failure of tissue retrieval, n (%)	5 (1.9%)	0 (0%)	5 (4.3%)	0.02
Post-polypectomy bleeding, n (%)	0 (0%)	0 (0%)	0 (0%)	N/A
Perforation, n (%)	0 (0%)	0 (0%)	0 (0%)	N/A

Perforation, n (%) 0 (0%) 0 (0%) N/A


Measuring Polypectomy Technique

- Direct Observation of Polypectomy Skills (DOPyS)
 - 33 individual skills and overall polypectomy competency graded from 1-4, with a score ≥3 denoting competency

Skill	Descriptors
Achieves optimal polyp view and position	 Ensures clear views by aspiration/insufflation/wash Maintains optimal polyp position (5-6 o'clock) Takes appropriate action for position correction and clear views throughout the procedure

Good Polyp Detectors are not Necessarily Good Polyp Resectors

Polypectomy competency rates do not correlate with ADR


Above Median Polypectomy Competency (≥70%)

Video Coaching to Improve Technique

Use of Inappropriate
Technique
(Score 2)

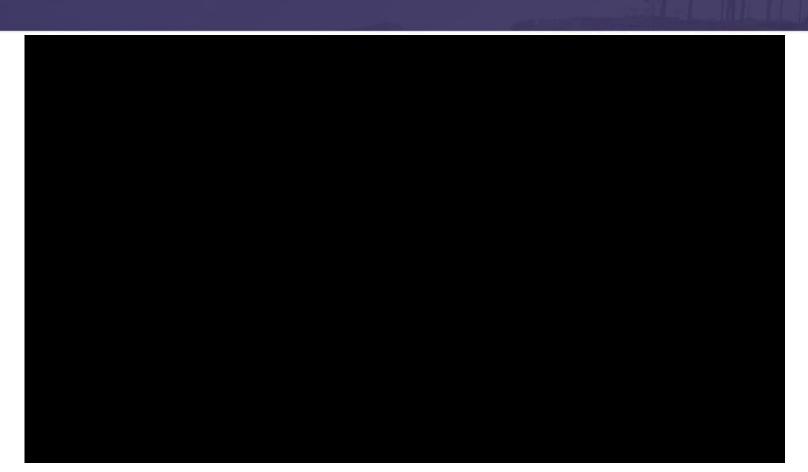
Video Coaching to Improve Technique

Pre-report card

Overall polypectomy competency in the pre- vs post-report card phase

	Phase 2: Pre-report card	Phase 3: Post-report card	P value
All Polyps			
Mean DOPyS Score (SD)	2.7 (0.87)	3.0 (0.76)	.01
Rate of Competent Polypectomy	56.4%	69.1%	.04
Diminutive Polyps (<6 mm)			
Mean DOPyS Score (SD)	2.7 (0.91)	3.3 (0.76)	<.0001
Rate of Competent Polypectomy	56.7%	80.5%	.001
Small-to-Large Polyps (≥6 mm)			
Mean DOPyS Score (SD)	2.65 (0.65)	2.4 (0.93)	.3
Rate of Competent Polypectomy	55%	35.7%	.2

Post-report card


The Changing Landscape of Endoscopic Resection

- Cold EMR
- Underwater EMR
- Full Thickness Resection
- No EMR? (ESD)
 - Covered another day!

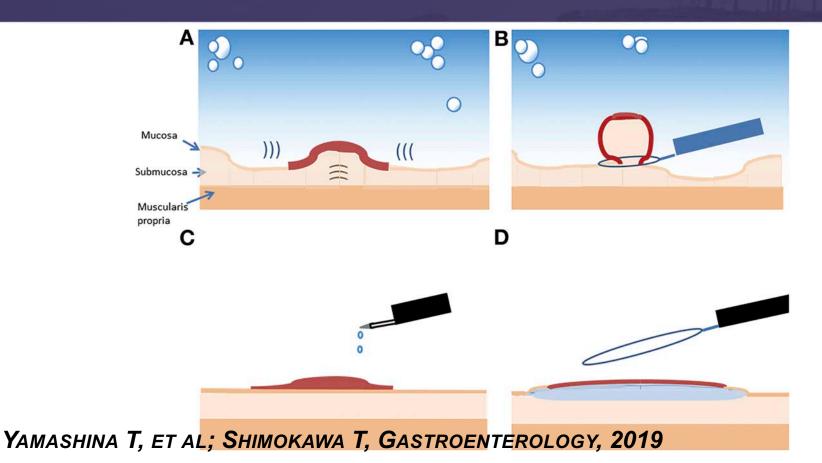
Cold EMR

- Applied generally for SSPs
- Goal is to reduce/eliminate risk of postpolypectomy bleeding which can be as high as 5% in large right-sided lesions

What is Cold EMR?

Early Data Supporting Cold EMR

Systematic review and pooled analysis for SSPs


Events	≥ 10 mm polyps (n=829 pts)	≥ 20 mm polyps (n= 361 pts)	Cold EMR (n=112 pts)
Recurrence rate	5.5% (CI: 2.7%-8.4%)	7.2% (CI: 3.1%-11.3%)	1.2% (CI: 0%-3%)
En-bloc vs piecemeal recurrence rates	2.6% (CI: 0.5%-4.7%) vs 3.4% (CI: 0.1% - 6.6%)	NA	NA
Technical success	99.5% (CI: 99.1%-99.9%)	99.1% (CI: 98.3%-99.8%)	98.7% (CI: 97.1%-100%)
Immediate bleeding	1.5% (CI: 0.2%-2.8%)	3% (CI: 0.3%-5.6%)	1.1% (CI: 0% - 3.1%)
Delayed bleeding	2% (CI: 0.5%3.4%)	3.6% (CI: 1.9%-5.4%)	0%
Perforation	0.4% (CI: 0%-0.9%)	0.5% (CI: 0%-1.2%)	0%

CHANDRESEKAR VT ET AL; SHARMA P, DDW 2019

What is Underwater EMR?

- Underwater Endoscopic Mucosal Resection (UEMR) without submucosal injection has emerged as an alternative technique to conventional injection-assisted EMR (CEMR)
 - First described by Binmoeller et al. in 2012
 - Numerous publications since
 - Recent retrospective comparative study of UEMR vs CEMR
 - Lower adenoma recurrence rate with UEMR (7.3% vs 28.3%)
 - Fewer procedures to reach curative resection (1.0 vs 1.3)
 - No difference in adverse events
- No prospective randomized data comparing UEMR vs standard EMR

Rationale for Underwater EMR

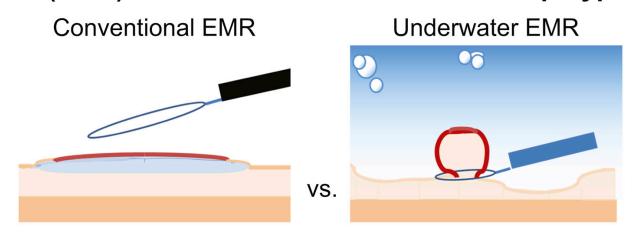
What is Underwater EMR?

Results

Outcomes	CEMR (n = 106)	UEMR (n = 113)	P-Value
# of resection pieces			
1 (en bloc)	27 (25.5%)	58 (51.3%)	p=0.001
2	16 (15.1%)	16 (14.2%)	
3	16 (15.1%)	11 (9.7%)	
>3	47 (44.3%)	28 (24.8%)	p=0.003
Additional Techniques required			
Biopsy forceps (cold)	16 (15.1%)	7 (6.2%)	
APC	3 (2.8%)	1 (0.9%)	
Hot avulsion	9 (8.5%)	5 (4.4%)	
All additional techniques	28 (26.4%)	13 (11.5%)	p=0.006

Prophylactic clips used equally

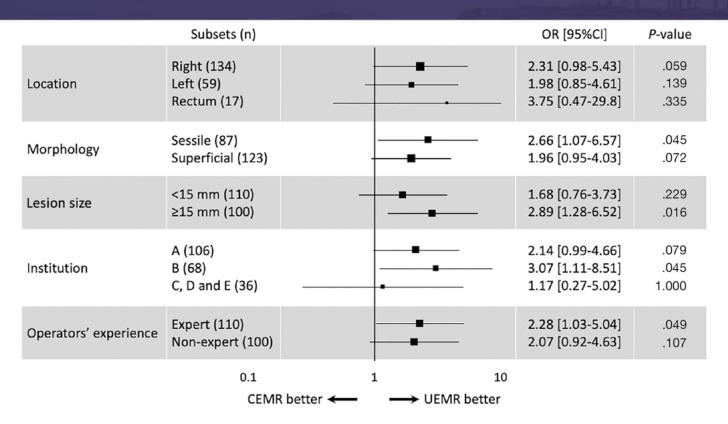
HAMERSKI C ET AL, DDW 2018


Results

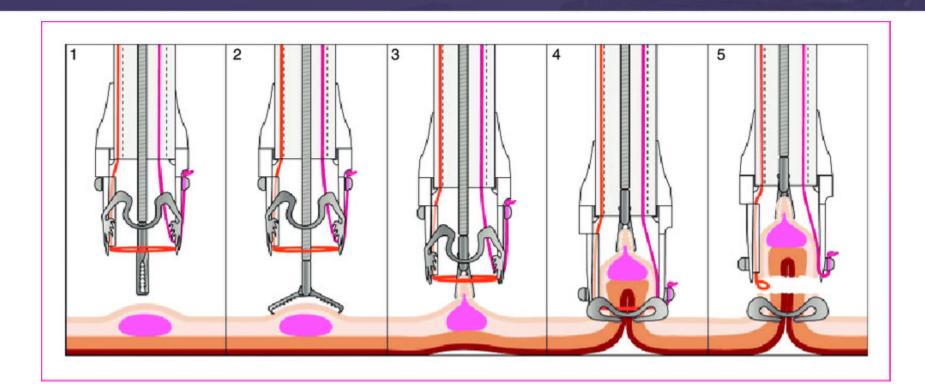
Outcomes	CEMR (n = 106)	UEMR (n = 113)	P-Value
Resection time (min)	16.3 ± 13.0 (2 – 85)	10.1 ± 8.5 (1 – 45)	p<0.0001
Total procedure time (min)	43.4 ± 20.4 (15 - 120)	36.4 ± 19.9 (10 - 110)	p=0.011

 UEMR resulted in significantly shorter resection time as well as shorter total procedure time

Underwater EMR


Comparison of underwater and conventional endoscopic mucosal resection (EMR) for intermediate-size colorectal polyps

Similar bleeding rates; no perforation rates in either group

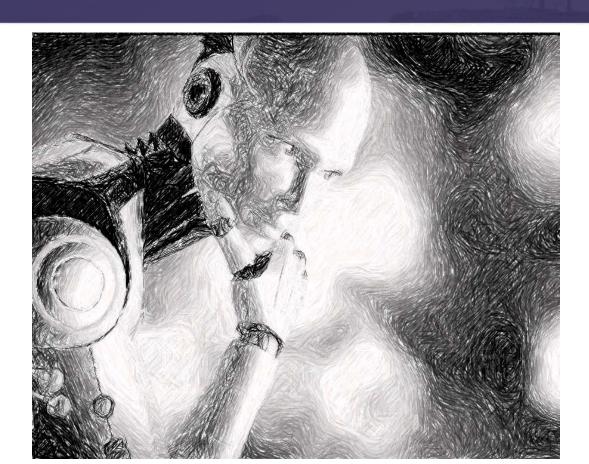

Gastroenterology

Underwater EMR Superior in All Subgroups

YAMASHINA T, ET AL; SHIMOKAWA T, GASTROENTEROLOGY, 2019

What is Full Thickness Resection?

Use of EFTR

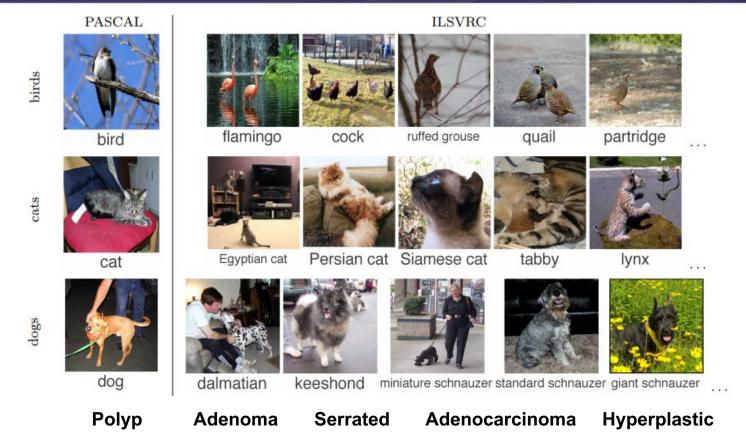

 Most logical use is T1 colon cancers or adenomas which cannot be removed via traditional endoscopic means

EFTR for T1 Cancers

Of 156 T1 cancers, technical success achieved in 144/156 (92.3%), mean procedural time was 42 minutes. R0 resection was achieved in 112/156 (71,8%). Severe procedure-related adverse events were recorded in 3,9%. Discrimination between high-vs. low-risk tumor was successful in 155/156 cases (99.3 %). In total 53 patients (34%) underwent oncologic resection due to high risk features whereas 98 patients (62%) were followed endoscopically.

KULLMER A ET AL; SCHMIDT A, DDW 2019.

Artificial Intelligence



What is Artificial Intelligence?

 Al allows unsupervised computer algorithms to do specific tasks that traditionally required a human brain

Associated/Related Terms				
Machine Learning	Deep Learning	Neural Networks		
Random Forests	Convolutional Neural Networks	Transfer Learning		

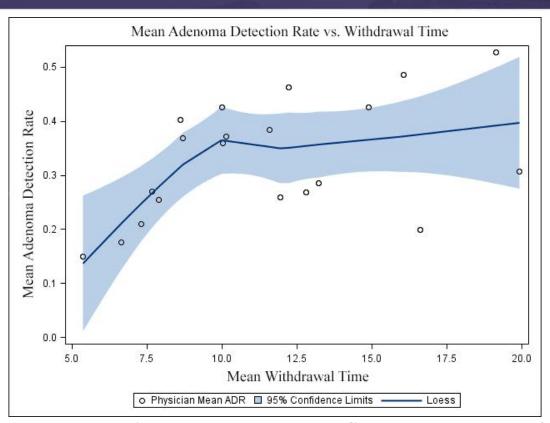
Challenges of AI Image Recognition Rapidly Fading Away


Convolutional Neural Networks

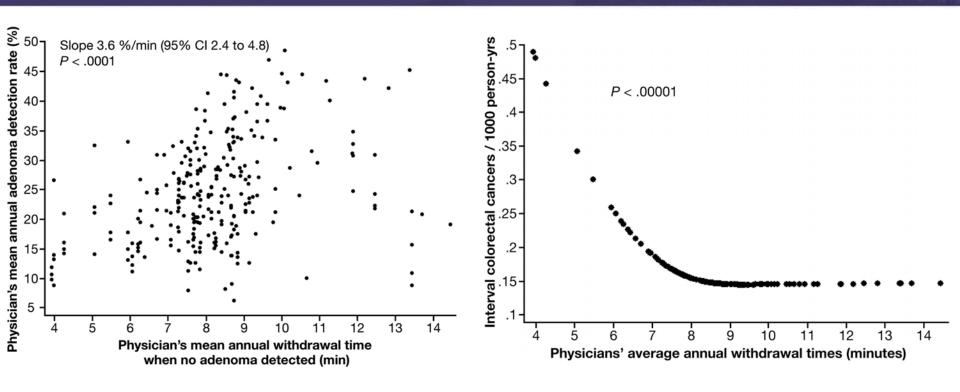
ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

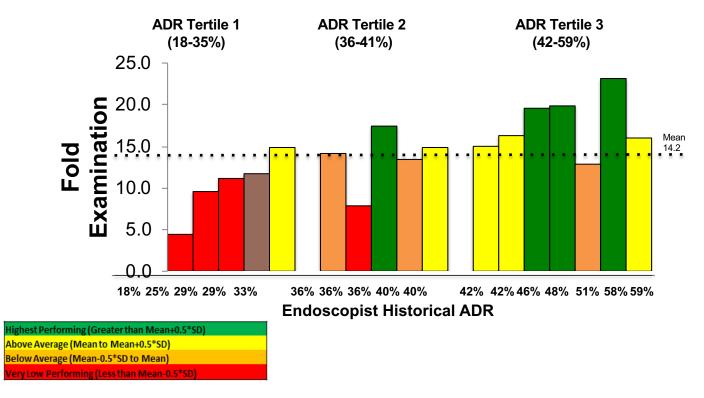
Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca


Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

"AI": Making the Case for Screening Colonoscopy


- Variability has been demonstrated in all aspects of screening colonoscopy
 - Inspection
 - Detection
 - Resection
- Reduction of colonoscopy costs is a primary concern of payers

Variability in Inspection Quality



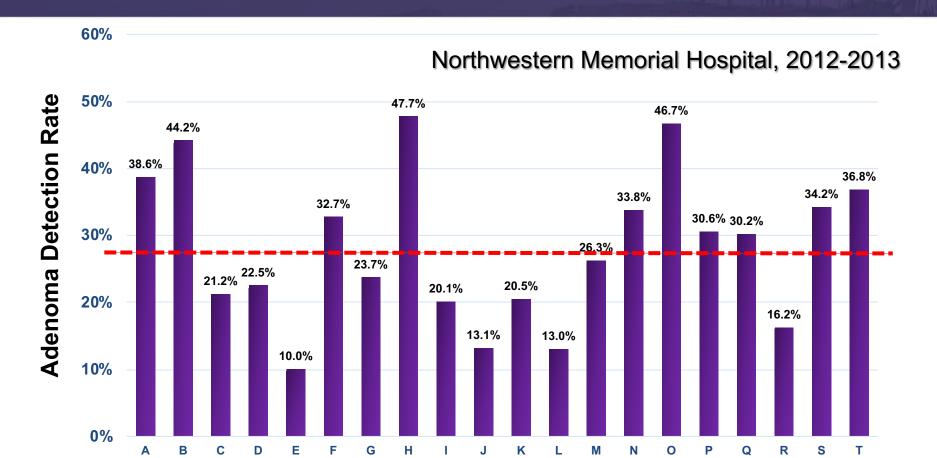
KESWANI RN ET AL; PANDOLFINO J, AMERICAN JOURNAL OF GASTROENTEROLOGY, 2015

Association of Withdrawal Time with Adenoma Detection Rate

Variation in Technique Among Endoscopists

Cecal Intubation and Inspection

AUTOMATED COMPUTER DEEP O


Daniel J. Low^{1,2}, Hojjat sale Karam Elsolh¹, Shai Genis¹, Joseph John Barfett³, Sami

Compared to 'gold standard' video review, CNN predictions were extremely accurate for insertion time (IT) (R²=0.996), withdrawal time (WT) (R²=0.995) and total time (TT) (R²=0.999). The mean difference in withdrawal time between expert video review and CNN predictions was 26 seconds. By contrast, the mean difference in withdrawal time between expert video review and manual WT entries was 5 minutes 15 seconds. In 13 of 14 cases, CNN-predicted WTs outperformed manually entered WTs relative to expert video review.

AUTOMATED INSERTION TIME, CECAL INTUBATION, AND WITHDRAWAL TIME DURING LIVE COLONOSCOPY USING CONVOLUTIONAL NEURAL NETWORKS - A VIDEO VALIDATION STUDY

Christopher Rombaoa¹, Ankush Kalra¹, Tyler Dao¹, James Requa¹, Andrew Ninh¹, Jason B. Samarasena¹, William E. Karnes¹

In Support of Need to Reduce ADR Variability

Impact of AI on Polyp Detection

Endoscopy

ORIGINAL ARTICLE

Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study

Pu Wang, ¹ Tyler M Berzin, ² Jeremy Romek Glissen Brown, ² Shishira Bharadwaj, Aymeric Becq, Xun Xiao, Peixi Liu, Liangping Li, Yan Song, Di Zhang, Yi Li, Guangre Xu, Mengtian Tu, Xiaogang Liu

Gastroenterology 2018;155:1069-1078


Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy

Gregor Urban, ^{1,2} Priyam Tripathi, ⁴ Talal Alkayali, ^{4,5} Mohit Mittal, ⁴ Farid Jalali, ^{4,5} William Karnes, ^{4,5} and Pierre Baldi^{1,2,3}

¹Department of Computer Science, University of California, Irvine, California; ²Institute for Genomics and Bioinformatics, University of California, Irvine, California; ³Center for Machine Learning and Intelligent Systems, University of California, Irvine, California; ⁴Department of Medicine, University of California, Irvine, California; and ⁵H.H. Chao Comprehensive Digestive Disease Center, University of California, Irvine, California

Deep Learning Improves Polyp Detection Rates

Impact of AI on Polyp Detection

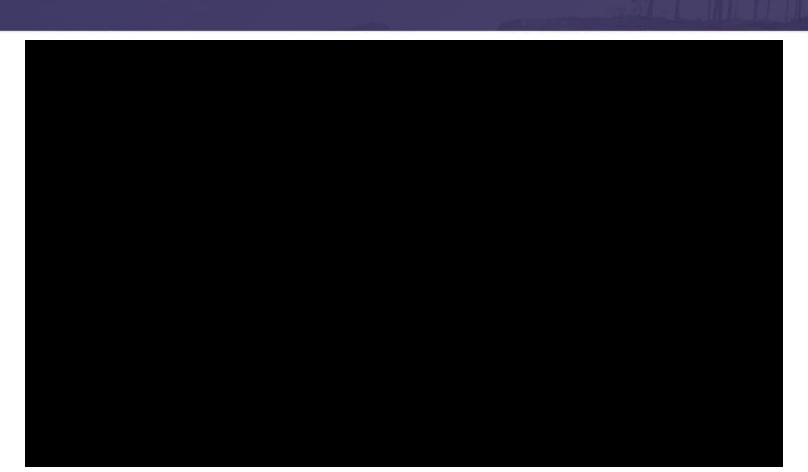
Polyp Characteristics	Routine Colonoscopy	CADe colonoscopy
Polyp Detection Rate	29.1%	45.0% [p<0.01]
Adenoma Detection Rate	20.3%	29.1% [p<0.01]
Mean Number of Detected Adenomas	0.31	0.53 [p<0.01]

Polyp Recognition

APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS COULD DETECT ALL LATERALLY SPREADING TUMOR IN COLONOSCOPIC IMAGES

Satoki Shichijo¹, Kazuharu Aoyama², Tsuyoshi Ozawa³, Motoi Miura², Hiromu Fukuda¹, Yoji Takeuchi¹, Hirotoshi Takiyama⁴, Toshiaki Hirasawa⁵, Tatusya Onishi^{7,6}, Keigo Matsuo⁸, Soichiro Ishihara⁷, Ryu Ishihara¹, Tomohiro Tada^{7,2}

Polyp Classification


Watanabe¹, Hiroshi Kashida¹

COMPUTER-AIDED DIAGNOS All of the 11 polyps were identified by the CAD system. While, SYSTEM USING ARTIFIC only 3 snap shots were taken in the 3 videos without polyps (27%)... 2 pictures of anus and 1 of ileocecal valve. Eight out of 11 polyps (73%) were properly classified by the CAD system; Yoriaki Komeda¹, Hisashi Ha Eight adenomas were properly recognized as adenoma, however, 2 hyperplastic polyps and 1 juvenile polyp were missclassified as adenoma.

REAL-TIME COMPUTER-ASSISTED DIAGNOSIS SYSTEM OF COLORECTAL POLYPS IN STANDARD COLONOSCOPY VIDEOS

Tsuyoshi Ozawa¹, Soichiro Ishihara², Mitsuhiro Fujishiro⁵, Motoi Miura³, Kazuharu Aovama³. Tomohiro Tada^{4,3,2}

In Action

Northwestern Medicine
Interventional Endoscopy