Post AASLD 2017 Update: Metabolic Diseases

Gina Choi, MD Assistant Professor of Medicine and Surgery Dumont-UCLA Liver Transplant Center


December 2, 2017

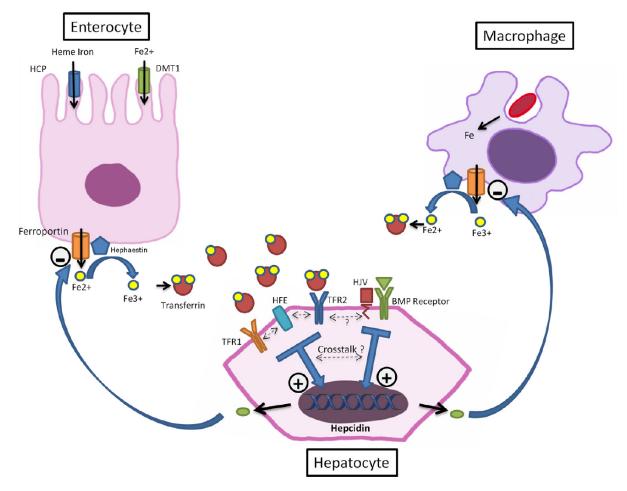
Outline: Review and Update

• Hereditary Hemochromatosis (HH)

• Alpha-1 Antitrypsin Disease (A1AT)

• Wilson Disease (WD)

Carl-Bertil Laurell


Friedrich von Recklinghausen

Samuel Kinnear Wilson

Hereditary Hemochromatosis

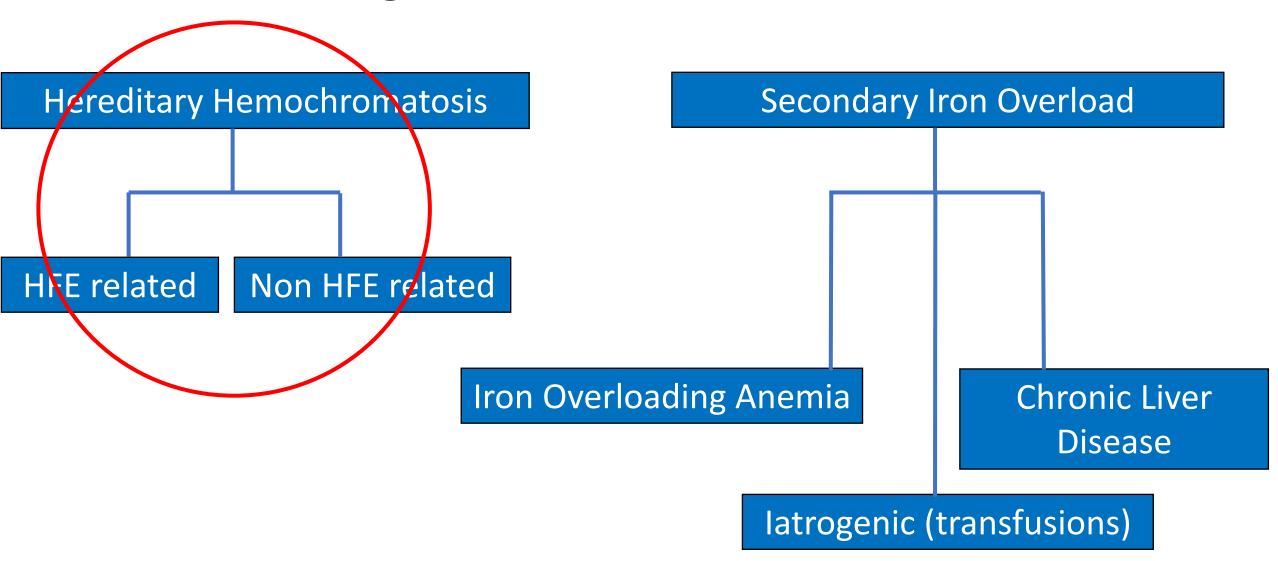
Iron Physiology

HFE senses Fe levels

Hepcidin turns off ferroportin

Ferroportin exports Fe out of cells

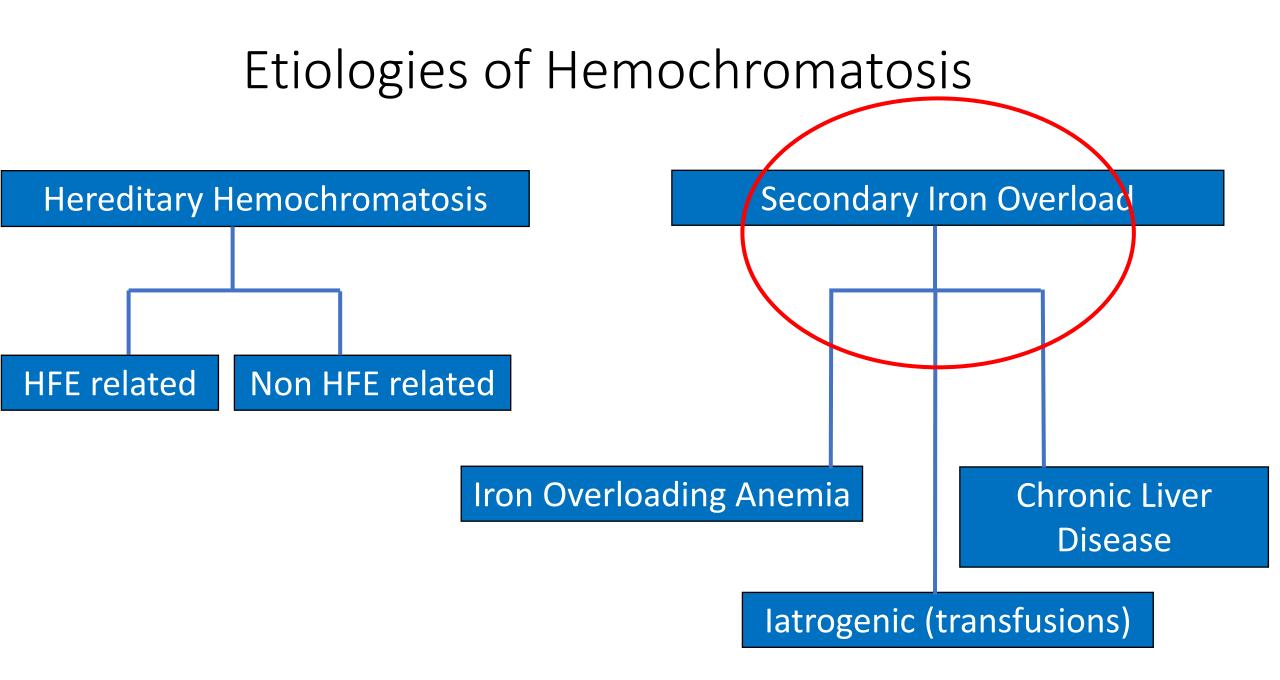
Figure 1 Iron metabolism regulation. HCP: heme carrier protein; DMT1: divalent metal transporter 1; HJV: hemojuvelin; TFR1: transferrin receptor 1; TFR2: transferrin receptor 2; BMP receptor: bone morphegenic protein receptor.


What is Hereditary Hemochromatosis?

- Iron deposition in multiple organs
 - Cirrhosis
 - Liver cancer (HCC)
 - Diabetes mellitus (iron deposition in pancreas)
 - Arthropathy
 - Congestive heart failure
- Genetic autosomal recessive disorder on the HFE gene

Friedrich von Recklinghausen

Etiologies of Hemochromatosis

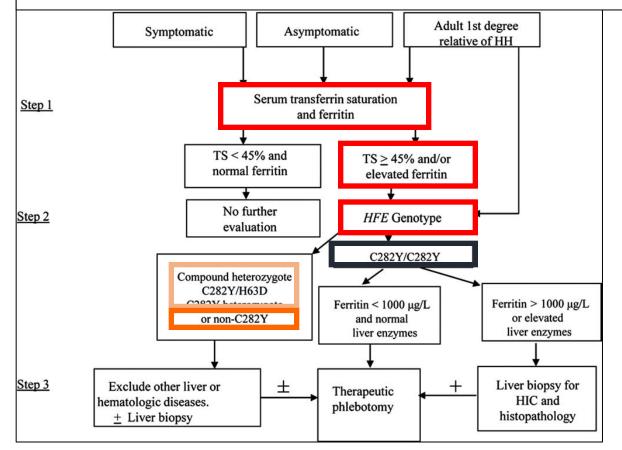


Hereditary Hemochromatosis: HFE related, Type 1

- C282Y/C282Y homozygotes
 - Most common HFE mutation
 - 85% of all cases
 - Highest level of hepatic iron deposition
- C282Y/H63D compound heterozygote
 - Only 1-5% with clinical phenotype of iron overload
 - If evidence of iron overload, look for another co-factor
- H63D, S65C mutation
 - ? important
 - Only lead to iron overload with another risk factor

Hereditary Hemochromatosis: Non-HFE Related

- 10-15% of cases
- Type 2 Juvenile Hemochromatosis (severe)
 - Type 2A: Hemojuvelin mutation: early symptoms with organ involvement
 - Type 2B: Hepcidin mutation: rare, also seen in children
- Type 3 Transferrin 2 receptor associated HH
 - Early onset disease with both heterozygotes/homozygotes
- Type 4 Ferroportin associated HH
 - Autosomal dominant
 - Loss-of function mutation leads to anemia, low transferrin saturation, high ferritin
 - Phlebotomy can often worsen anemia



Causes of Secondary Iron Overload

- Iron loading anemia (red cell disorders causing ineffective erythropoesis)
 - Thalassemia
 - Myelodysplastic anemia
- Chronic liver disease
 - Alcohol use
 - Non alcoholic fatty liver disease
 - Hepatitis C
 - Porphyria cutanea tarde

AASLD PRACTICE GUIDELINE

Diagnosis and Management of Hemochromatosis: 2011 Practice Guideline by the American Association for the Study of Liver Diseases

 Check ferritin and transferrin saturation

- 85% of HH are
 C282Y/C282Y
- Small minority are C282Y/H63D
- 10-15% are non-HFE

Non-HFE Genetic Testing

Test Catalog > Invitae Hereditary Hemochromatosis Panel

Invitae Hereditary Hemochromatosis Panel

Test description

The Invitae Hereditary Hemochromatosis Panel analyzes five genes associated with hereditary hemochromatosis (HH), a genetic disorder that causes increased iron absorption and can lead to iron overload. These genes were curated, based on the available evidence to date, to provide a comprehensive test for indications related to hemochromatosis-related iron overload.

TFR2

Ä

ADD TO ORDER

Order test

✓ Primary panel (5 genes)

🖨 Print this page

Q Search

Ordering

TEST CODE: 05201

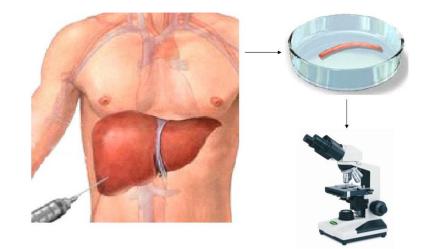
TURNAROUND TIME: 10–21 calendar days (14 days on average)

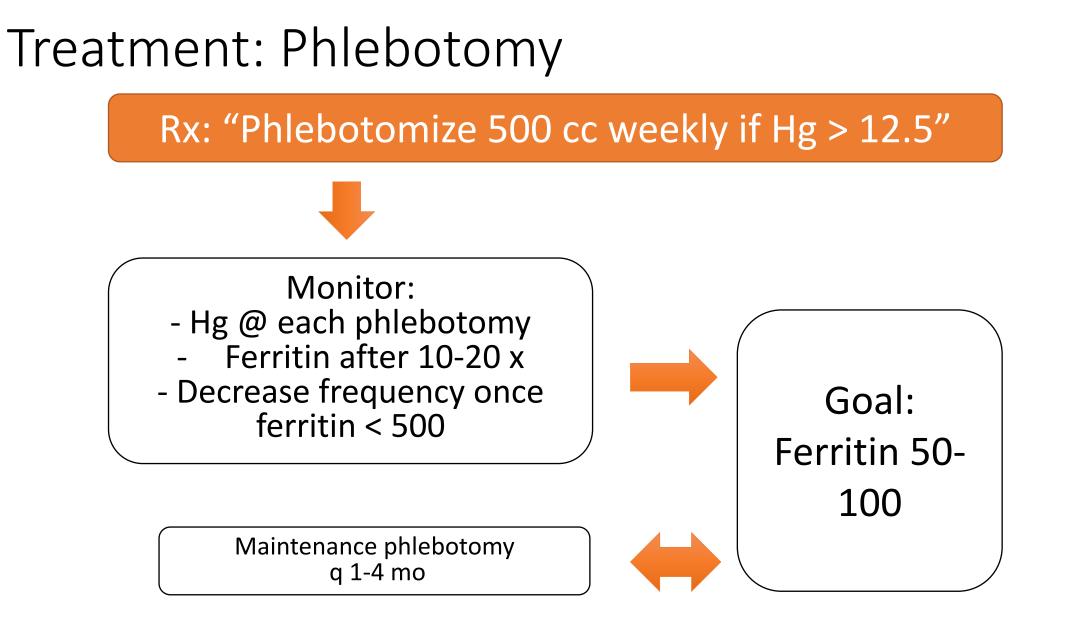
PREFERRED SPECIMEN: 3mL whole blood in a purple-top tube

ALTERNATE SPECIMENS: DNA or saliva/assisted saliva

Sample requirements

Request a sample kit


Billing

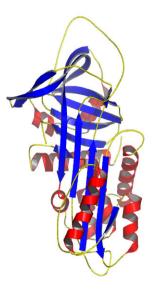

NEW YORK APPROVED: YES

Billing information

When Do You Perform a Liver Biopsy in HH?

- HFE C282Y/C282Y, ferritin > 1000, elevated ALT/AST
- Non-HFE, elevated liver test, abnormal Fe studies

AASLD Practice Guidelines 2011 Slide courtesy of J. Ahn, MD

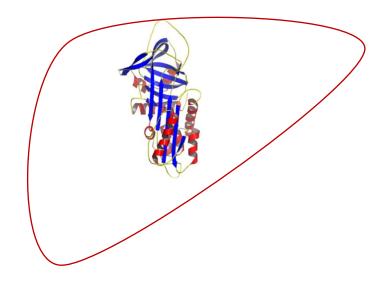

2017 AASLD Hemochromatosis

- Abstract #815: Risk and risk factors of HCC in patients with HFErelated hereditary hemochromatosis
- N = 196 at the VA with HH and cirrhosis
- HCC occurred in 25% of patients during median follow up of 5 years
- Older age at diagnosis associated with higher risk of HCC
- Degree of iron overload, receipt and adequacy of HH treatment not associated with higher risk of HCC

Alpha 1-Antitrypsin Deficiency

Introduction

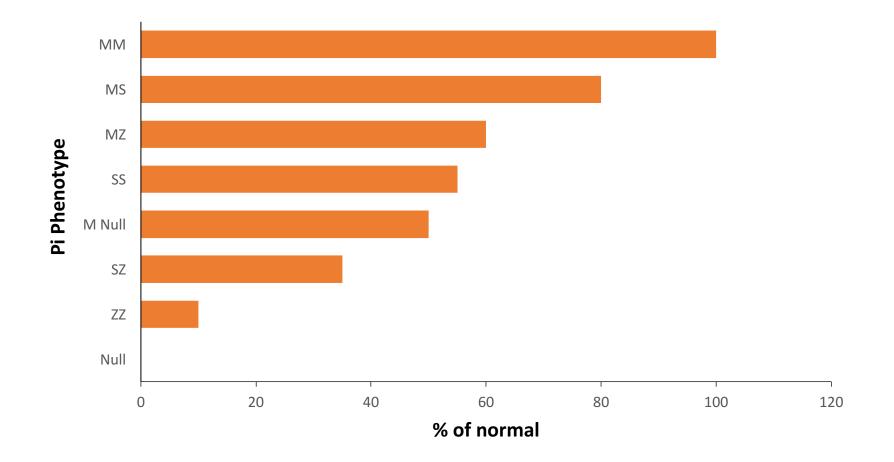
- Inherited autosomal recessive condition affecting lungs and liver
- α -1 antitrypsin (A1AT) is a serine protease inhibitor made in the liver
- Inhibits destructive neutrophil elastase that circulates in the blood
 - No inhibition leads to lung disease



Carl-Bertil Laurell

Introduction

- Single amino acid substitution leads to an improperly folded A1AT protein
- Abnormal protein unable to leave the liver
- 2 problems:
 - Build up inside liver causes damage
 - *Deficiency* of the protein outside the liver



The Risk for Liver Disease in A1AT

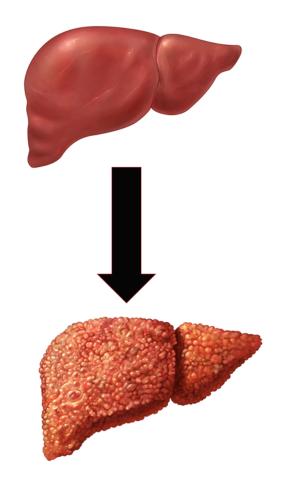
Pi Phenotype	Risk for liver disease
MM	0
ZZ	10-20%
MZ	3-5% with another condition
Null	0

- M is normal version of protein
- Z is abnormal version of protein
- Variable presentation: not everyone with A1AT deficiency develops liver disease

Blood levels of A1AT

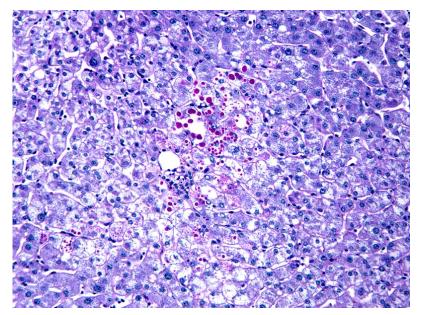
Berg C. AASLD Sept 2010

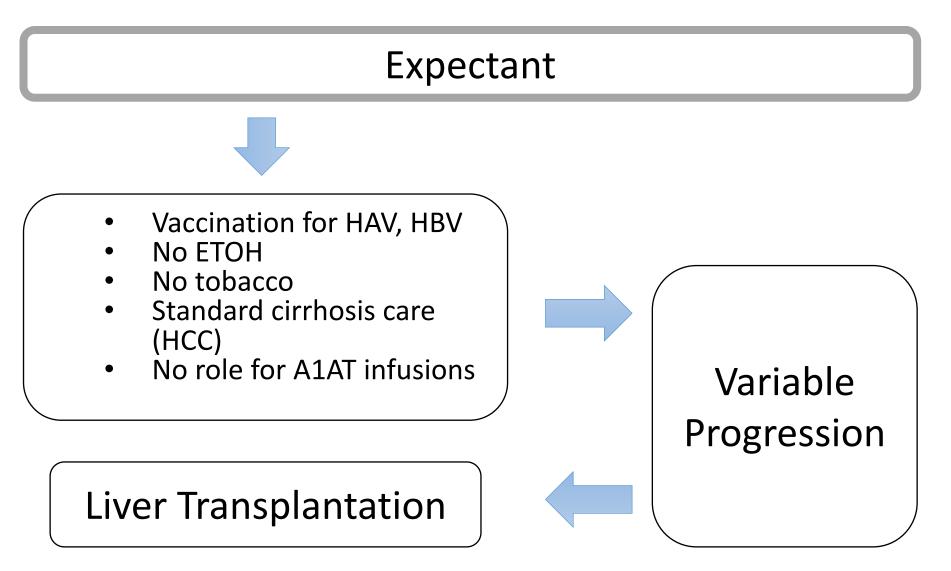
Pediatric Presentation of A1AT in the Liver


Neonatal hepatitis syndrome

- Infancy
 - Cholestasis
 - Jaundice
 - Elevated liver tests
- Childhood
 - Hepatomegaly
 - Elevated liver tests
 - Liver failure

Adult Presentation of A1AT in the Liver


- Adults
 - Cryptogenic cirrhosis
 - Elevated liver tests
 - Unexplained chronic active hepatitis
 - Family history of liver disease
 - HCC
 - Emphysema

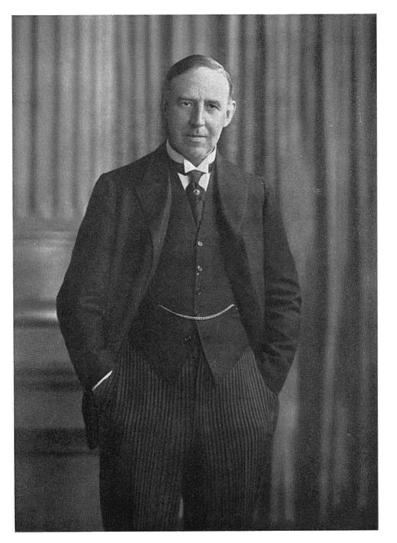

Cirrhosis

Diagnosis of A1AT

- A1AT blood levels
 - Acute phase reactant
- A1AT phenotype
 - Migration of alleles in an isoelectric gradient
- Liver biopsy
 - PAS = periodic acid-Schiff positive, diastase resistant globules in the ER of hepatocytes

Treatment of A1AT

How Do A1AT Patients Do After Liver Transplant?


Survival	ZZ patients	SZ patient
1 year	86%	91%
3 year	83%	86%
5 year	80%	79%
10 year	72%	79%

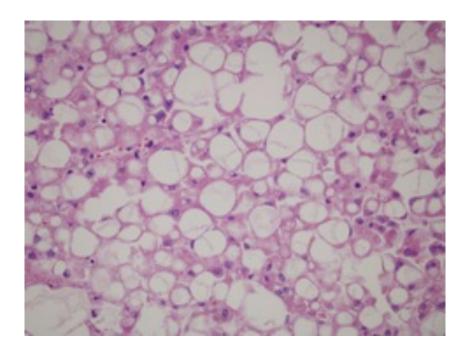
2017 AASLD: A1AT

- Abstract #801: Z is the strongest polymorphism based risk factor for fibrosis
- Abstract #803: ZZ are at risk to develop both fibrosis and steatosis
- Abstract #823:
 - Patients with severe pulmonary manifestations of AAT rarely develop advanced liver fibrosis as adults
 - Steatosis may promote liver fibrosis (high BMI, GGT)
 - Z allele predisposes for development of significant portal hypertension

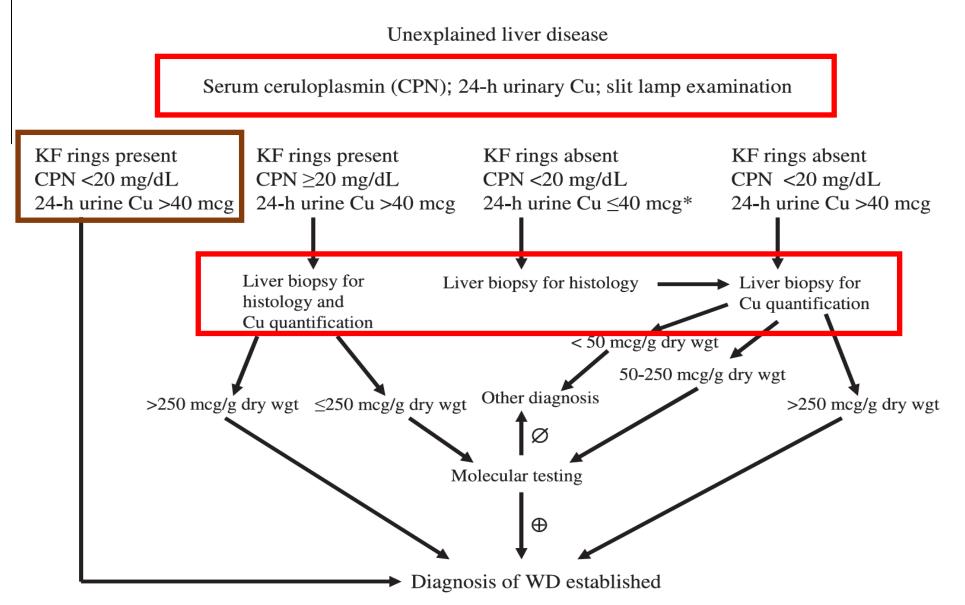
Wilson Disease

Wilson Disease


- First described in 1912 by Samuel Kinnear Wilson
- Defect of biliary copper (Cu) excretion
- Results in Cu accumulation


WD: When to suspect it

- Age 3-55, abnormal liver tests
- Abnormal liver tests and neurologic or psychiatric symptoms
 - Young adult with change in school work
- NASH without signs of metabolic syndrome or insulin resistance
- Autoimmune hepatitis unresponsive to therapy
- Kayser-Fleischer rings
- Acute liver failure with non-immune hemolytic anemia


WD: Clinical Presentation

- Hepatic presentation
 - Increase liver enzymes
 - Hepatomegaly
 - Fatty liver
 - Acute hepatitis
 - Cirrhosis
 - Acute liver failure
- Neurologic presentation (up to 1/3)
 - Movement disorder
 - Rigidity
 - Micrographia
 - Kayser Fleischer rings
 - Depression, mania, psychosis

WD: Diagnosis

	Normal	Wilson Disease
Serum Cu (ug/dl)	80-140	< 80
Urine Cu (ug/24H)	< 40	>100
Serum ceruloplasmin (mg/dl)	20-40	<20
Hepatic Cu (ug/gm dry weight)	15-50	250-300

WD Treatment: Pharmacotherapy

- Chelation to increase urinary Cu excretion
 - D-pencillamine
 - Trietine

- Decrease intestinal Cu absorption
 - Zinc
 - Used as maintenance or first line in asymptomatic patients

Drug	Dose	Compliance Monitoring	Side Effect Monitoring
Trientine	Initial: 0.75-1.5 g/day divided in 2-3 doses Maintenance: Same	24-hour urinary Cu: 200-500 ug/d	CBC (Fe deficiency anemia), Gastritis
Penicillamine + pyridoxine B6	Initial: 1-1.5 g/day in 2-3 doses Maintenance: 0.75-1g/day	24-hour urinary Cu: 200-500 ug/d	CBC (anemia), UA (proteinuria), rashes, GI symptoms, worsens neurologic symptoms
Zinc	Initial: 50 mg elemental zinc three times daily Maintenance: titrate dose to 100- 150mg/day	24-hour urinary copper: <75 mg/d	Gastric irritation

Modified from Sleisenger 8th ed. Table 72-2 and from J. Ahn, MD

Treatment: Zinc Formulations Call the pharmacy

Formulation	Dose	Elemental Zn
Zinc acetate	25mg	7.5mg
Zinc gluconate	100mg	14mg
Zinc sulfate	220mg	50 mg
Zinc oxide	100mg	80mg

WD: Treatment

- Serum Free Cu concentration
 - = Total Cu (3.15 x ceruloplasmin)
 - > 25 ug/dl in most untreated patients
 - < 15 ug/dl normal range
 - < 5 ug/dl copper depletion
- On treatment
 - if 24H urine Cu is low and serum free Cu concentration is low, ? Cu deficiency
 - if 24H Cu is high and serum free Cu concentration is high, ? noncompliance

WD Treatment: Dietary Modifications

- Eliminate copper rich foods
 - Organ meats (liver)
 - Shellfish
 - Nuts (cashews, sesame, sunflower)
 - Chocolate
 - Mushrooms
 - Dried fruit

2017 AASLD: Wilson Disease

- Abstract #802
 - WTX101 (tetrathiomolybdate): Cu protein binding agent
 - Phase 2 study, PO, daily dose, 24 weeks
 - Lowered non-ceruloplasmin bound Cu, **improved** neurologic status, improved INR, ALT, albumin
- Abstract #830
 - Liver stiffness measurement in Wilson disease
 - Mean LSM 32.3 kPa for cirrhosis
 - Mean LSM 6.2 kPa in F0 F2
 - Gradual decrease with chelator treatment

Summary

- Hereditary Hemochromatosis
 - Non-HFE up to 15%
 - Liver biopsy if HFE C282Y/C282Y, ferritin > 1000, elevated ALT
 - Risk for HCC
- A1AT
 - Variable progression of liver disease
 - Hepatic steatosis and Z risk factors for progression of liver disease
- Wilson Disease
 - New therapy: WTX101 (tetrathiomolybdate), a Cu protein binding agent

Thank you

